自動更新

並べ替え:新着順

ベストポスト
メニューを開く

5月は「(個人的に)#物理 #工学 月間」 「Ⅱ-3 #特殊相対論#ローレンツ変換」 考察4「#光子」(2) #ニュートン が「##粒子 説」な理由は…? こっちの方が早いのね。 1690年『#光についての論考』光の #波動説 ja.wikipedia.org/wiki/%E3%82%AF… #クリスティアーン・ホイヘンス - Wikipedia

星野隆夫@PJ154

メニューを開く

5月は「(個人的に)#物理 #工学 月間」 「Ⅱ-3 #特殊相対論#ローレンツ変換」 4つ目の考察は「#光子」(2) (1)は #ヤングの実験 でやったんだけど、歴史的にはいろいろあって…。 1704年『#光学##粒子ja.wikipedia.org/wiki/%E3%82%A2… #アイザック・ニュートン - Wikipedia

星野隆夫@PJ154

メニューを開く

#量子論の参考書> 「ゲージ場の量子論Ⅱ」(培風館1989九後) p36より引用: 『#光子#重力子(graviton)は (もちろん #ゲージ場 として 記述されるものだが) それぞれ #ベクトル#テンソル 対称性の #自発的破れ に伴う #NGボソン として 理解できることが知られている。』

素粒子物理学たん (素粒子論たん。原子核物理・量子力学の学術たん)@particle_ph_tan

メニューを開く

5月は「(個人的に)#物理 #工学 月間」 「Ⅱ-3 #特殊相対論#ローレンツ変換」 考察3の結論前に、考察4「#光子」-(1) #ヤングの実験 から「##波動 性」が示されたので、#素粒子 の一つ #光子 は(中身の詰まった)# ではない。歴史的に。 ja.wikipedia.org/wiki/%E3%83%A4… #ヤングの実験 - Wikipedia

星野隆夫@PJ154

メニューを開く

#量子論の参考書> 「ゲージ場の量子論Ⅱ」(1989九後) p36より引用: 『#現実 において #厳密#零質量#粒子 として #観測 されている #素粒子 は ・#光子(photon)と ・#ニュートリノ(neutrino) しか #存在しない. #近似的 に 「零」#質量 の粒子としては #π中間子#存在 する.』

素粒子物理学たん (素粒子論たん。原子核物理・量子力学の学術たん)@particle_ph_tan

メニューを開く

#量子論の参考書> 「量子場の理論」(2008江澤) 序文より 『最近の #場の量子論 の入門書は #量子電磁気学 の説明を省いているのも 多々見受けられるが, 場の量子論の最大の成功例である 量子電磁気学の理解は重要と考えた. ここで導いた #光子 の伝搬関数は 金属中の光子に応用でき…』

物理たん (大学の物理学の入門用・学術たん。物理学たん)@buturi_tan

メニューを開く

#シュレディンガー方程式の導出 32 #相対論 より E=√(m^2 c^4+p^2 c^2)① 「#光子 はm=0だから①はE=pcとなり そこから p=h/λ② が言える」 「次はm≠0である #電子 にも ②を同様に当てはめよう」 ②はm=0の前提で導いたのに m≠0の時も②を使うのは変だ! ↑ 初学者のハマりポイント

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 30 ちゃんとやると 下記の順序になる。 #マクスウェル方程式#電磁気学 および #ガリレイ変換 下での破綻 ↓ #特殊相対論 での #テンソル 計算 ↓ #光子#相対論的エネルギー E=cp ↓ #シュレディンガー方程式 導出 ↓ それをもとにした #量子化学

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

Realization of fractional quantum Hall state with interacting photons science.org/doi/10.1126/sc… 光子と相互作用することで分数量子ホール状態を実現し、容錯性のある量子コンピューティングに可能性を示す最新研究が注目されています。 #量子コンピューティング #光子 #トポロジカル

ジャーナル倶楽部@journal_clubs

メニューを開く

#シュレディンガー方程式の導出 20 1次元ポテンシャルU(x)のもとで 速度v(ブイ)で運動する 質量mの #電子 の全エネルギーは E=(1/2)mv^2+U(x) 運動量p=mvより E=p^2 / 2m+U(x) #光子(#光量子)で成立する #運動量#波長 表示の式 p=h/λ がもし電子にも当てはまれば E=h^2 / 2mλ^2+U(x)

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 19 #電磁波(#光子)について, #運動量 が光の #波長 に反比例すること p = h / λ ★ を導いた。 ここからは, 「もし #電子 にも波長 λ があるとすると, この★式は電子にも当てはまるのではないか…?」 と仮定した場合に どうなるかを見てゆく。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 18 ①#特殊相対論 より #光子#相対論的エネルギー E=pc ②#光量子仮説 より E=hν ③: ①②より p=hν/c ④波の基本関係式 c=νλ ⑤: ③④より 光子#運動量 p を #波長 で表示した式 p=h/λ を得る。 #電磁波 の波長が長いと,光子の運動量が小さい。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 16 ① E=pc を導出するには #特殊相対論 が必要。 ② E=hν を導出するには #光量子仮説 が必要。 #光子・歴史的発展 ja.wikipedia.org/wiki/%E5%85%89… この①と②を合体させた式が p = hν / c である。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 15 #プランク が発見し #アインシュタイン が名付けた #光量子仮説 によって… #光子#エネルギー Eは #(#電磁波)の #振動数 ν(ニュー)により E=hν だとわかった。 前ツイのE=pcと合わせると 光子#運動量 pを振動数表示した式 p=hν/c を得る。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 14 # は… ①マクロなスケールでは波(#電磁波) ②ミクロなスケールでは粒子(#光子#光量子) ②の時,光子#質量 m=0 であるにもかかわらず #運動量 p が非ゼロの値をとる。 この時, 光子の持つ #相対論的エネルギー E =√(m^2 c^4+p^2 c^2) =pc

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#素粒子と原子核の参考書> 「高エネルギー物理学実験」 (丸善出版1997真木) 前書きより引用: 『今日では #高エネルギー物理学#研究対象 は ・#クォーク や ・#ゲージ粒子 であるが, #実験 で直接 #捕捉#測定 するのは ・#ハドロン#レプトン#光子 といった #粒子 である。』

素粒子物理学たん (素粒子論たん。原子核物理・量子力学の学術たん)@particle_ph_tan

メニューを開く

#量子論の参考書> SGCライブラリ 「ゲージ場の量子論入門」(2006近藤) p2より: 『#古典論 が マクロな理論とすると ミクロな理論である #量子論 から (Coulomb力も)理解できるはず. #量子電磁力学 では #電磁場#量子化 した #量子 である #光子#電荷 間の #クーロン力 を媒介.』

素粒子物理学たん (素粒子論たん。原子核物理・量子力学の学術たん)@particle_ph_tan

メニューを開く

【光る君へ】藤原伊周の妾・光子とは?寝殿の上(三の君)とはどんな女性だったのか rekishiya.com/sannokimi_shin… #光る君へ #光子 #寝殿の上 #三の君 #藤原伊周 #藤原光子 #歴史屋

角田晶生(つのだ あきお)@tsunoda_akio

メニューを開く

#シュレディンガー方程式の導出 32 #相対論 より E=√(m^2 c^4+p^2 c^2)① 「#光子 はm=0だから①はE=pcとなり そこから p=h/λ② が言える」 「次はm≠0である #電子 にも ②を同様に当てはめよう」 ②はm=0の前提で導いたのに m≠0の時も②を使うのは変だ! ↑ 初学者のハマりポイント

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 30 ちゃんとやると 下記の順序になる。 #マクスウェル方程式#電磁気学 および #ガリレイ変換 下での破綻 ↓ #特殊相対論 での #テンソル 計算 ↓ #光子#相対論的エネルギー E=cp ↓ #シュレディンガー方程式 導出 ↓ それをもとにした #量子化学

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 20 1次元ポテンシャルU(x)のもとで 速度v(ブイ)で運動する 質量mの #電子 の全エネルギーは E=(1/2)mv^2+U(x) 運動量p=mvより E=p^2 / 2m+U(x) #光子(#光量子)で成立する #運動量#波長 表示の式 p=h/λ がもし電子にも当てはまれば E=h^2 / 2mλ^2+U(x)

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 19 #電磁波(#光子)について, #運動量 が光の #波長 に反比例すること p = h / λ ★ を導いた。 ここからは, 「もし #電子 にも波長 λ があるとすると, この★式は電子にも当てはまるのではないか…?」 と仮定した場合に どうなるかを見てゆく。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 18 ①#特殊相対論 より #光子#相対論的エネルギー E=pc ②#光量子仮説 より E=hν ③: ①②より p=hν/c ④波の基本関係式 c=νλ ⑤: ③④より 光子#運動量 p を #波長 で表示した式 p=h/λ を得る。 #電磁波 の波長が長いと,光子の運動量が小さい。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 16 ① E=pc を導出するには #特殊相対論 が必要。 ② E=hν を導出するには #光量子仮説 が必要。 #光子・歴史的発展 ja.wikipedia.org/wiki/%E5%85%89… この①と②を合体させた式が p = hν / c である。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 15 #プランク が発見し #アインシュタイン が名付けた #光量子仮説 によって… #光子#エネルギー Eは #(#電磁波)の #振動数 ν(ニュー)により E=hν だとわかった。 前ツイのE=pcと合わせると 光子#運動量 pを振動数表示した式 p=hν/c を得る。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 14 # は… ①マクロなスケールでは波(#電磁波) ②ミクロなスケールでは粒子(#光子#光量子) ②の時,光子#質量 m=0 であるにもかかわらず #運動量 p が非ゼロの値をとる。 この時, 光子の持つ #相対論的エネルギー E =√(m^2 c^4+p^2 c^2) =pc

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#量子論の参考書> 「場の量子論の拡がり 現代からみた種々相」(サイエンス社2006) p6より: 『#量子論# の量子論から 始まったにも関わらず, #ハイゼンベルク#シュレディンガー によって作られた #非相対論的量子力学#光子 の放出・吸収を 記述する事ができなかった。』

素粒子物理学たん (素粒子論たん。原子核物理・量子力学の学術たん)@particle_ph_tan

メニューを開く

#素粒子と原子核の参考書> 「高エネルギー物理学実験」(丸善出版1997真木) p202より引用: 『M_γ = 0 という式は #ラグランジアン に A_μ A^μ の項が 現れない事から言えるので, #光子 のみが #質量 ゼロのままである事が分かる。 この機構が #ヒッグス機構 と 呼ばれるものである。』

素粒子物理学たん (素粒子論たん。原子核物理・量子力学の学術たん)@particle_ph_tan

メニューを開く

#シュレディンガー方程式の導出 32 #相対論 より E=√(m^2 c^4+p^2 c^2)① 「#光子 はm=0だから①はE=pcとなり そこから p=h/λ② が言える」 「次はm≠0である #電子 にも ②を同様に当てはめよう」 ②はm=0の前提で導いたのに m≠0の時も②を使うのは変だ! ↑ 初学者のハマりポイント

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#宇宙科学・物理学の定数#プランク定数 h 6.62607015 × 10^(−34) [ J s ] #光子 の持つエネルギー ε は #振動数 ν に比例し, その比例定数がプランク定数。 ε=hν ※プランクの #光量子仮説 プランク定数 Planck constant ja.wikipedia.org/wiki/%E3%83%97… #作用 の次元を持つ。

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#シュレディンガー方程式の導出 30 ちゃんとやると 下記の順序になる。 #マクスウェル方程式#電磁気学 および #ガリレイ変換 下での破綻 ↓ #特殊相対論 での #テンソル 計算 ↓ #光子#相対論的エネルギー E=cp ↓ #シュレディンガー方程式 導出 ↓ それをもとにした #量子化学

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#量子論の参考書> 「量子場の理論」(2008江澤) 序文より 『最近の #場の量子論 の入門書は #量子電磁気学 の説明を省いているのも 多々見受けられるが, 場の量子論の最大の成功例である 量子電磁気学の理解は重要と考えた. ここで導いた #光子 の伝搬関数は 金属中の光子に応用でき…』

物理たん (大学の物理学の入門用・学術たん。物理学たん)@buturi_tan

メニューを開く

#シュレディンガー方程式の導出 20 1次元ポテンシャルU(x)のもとで 速度v(ブイ)で運動する 質量mの #電子 の全エネルギーは E=(1/2)mv^2+U(x) 運動量p=mvより E=p^2 / 2m+U(x) #光子(#光量子)で成立する #運動量#波長 表示の式 p=h/λ がもし電子にも当てはまれば E=h^2 / 2mλ^2+U(x)

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 19 #電磁波(#光子)について, #運動量 が光の #波長 に反比例すること p = h / λ ★ を導いた。 ここからは, 「もし #電子 にも波長 λ があるとすると, この★式は電子にも当てはまるのではないか…?」 と仮定した場合に どうなるかを見てゆく。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 18 ①#特殊相対論 より #光子#相対論的エネルギー E=pc ②#光量子仮説 より E=hν ③: ①②より p=hν/c ④波の基本関係式 c=νλ ⑤: ③④より 光子#運動量 p を #波長 で表示した式 p=h/λ を得る。 #電磁波 の波長が長いと,光子の運動量が小さい。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 16 ① E=pc を導出するには #特殊相対論 が必要。 ② E=hν を導出するには #光量子仮説 が必要。 #光子・歴史的発展 ja.wikipedia.org/wiki/%E5%85%89… この①と②を合体させた式が p = hν / c である。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 15 #プランク が発見し #アインシュタイン が名付けた #光量子仮説 によって… #光子#エネルギー Eは #(#電磁波)の #振動数 ν(ニュー)により E=hν だとわかった。 前ツイのE=pcと合わせると 光子#運動量 pを振動数表示した式 p=hν/c を得る。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 14 # は… ①マクロなスケールでは波(#電磁波) ②ミクロなスケールでは粒子(#光子#光量子) ②の時,光子#質量 m=0 であるにもかかわらず #運動量 p が非ゼロの値をとる。 この時, 光子の持つ #相対論的エネルギー E =√(m^2 c^4+p^2 c^2) =pc

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#量子論の参考書> 「ゲージ場の量子論Ⅱ」(培風館1989九後) p36より引用: 『#光子#重力子(graviton)は (もちろん #ゲージ場 として 記述されるものだが) それぞれ #ベクトル#テンソル 対称性の #自発的破れ に伴う #NGボソン として 理解できることが知られている。』

素粒子物理学たん (素粒子論たん。原子核物理・量子力学の学術たん)@particle_ph_tan

メニューを開く

#量子論の参考書> 「ゲージ場の量子論Ⅱ」 (培風館1989九後) p36より引用: 『現実において, 厳密に零質量の #粒子 として 観測されている #素粒子 は ・#光子(photon)と ・#ニュートリノ(neutrino) しか存在しない。 近似的に「零」質量の粒子としては #π中間子 が存在する。』

素粒子物理学たん (素粒子論たん。原子核物理・量子力学の学術たん)@particle_ph_tan

トレンド16:16更新

  1. 1

    スポーツ

    グランドスラム

    • 近本光司
    • 近本
    • プロ野球
    • 井上広大
    • 阪神
    • DeNA
  2. 2

    スポーツ

    満塁ホームラン

    • 近本光司
    • グラスラ
    • 第6号
    • 近本
    • 満塁弾
    • 阪神 近本
    • 6号
    • 2試合連続
    • ホームラン
    • NPB
  3. 3

    マリオ64

  4. 4

    扇風機ダンス

    • たけのこ
    • S.E.M
  5. 5

    スポーツ

    イトマサ

    • 伊藤将司
    • 2点差
    • 打たれすぎ
    • 勤続疲労
    • 9点
    • 大量援護
    • 進塁打
    • ビーズリー
    • 勝利投手の権利
    • 勝ち投手
  6. 6

    エンタメ

    未公開キントレ

    • 股間が怖い
  7. 7

    スポーツ

    ゴミス

    • ハットトリック
    • J初
    • PK
  8. 8

    マルハニチロ

  9. 9

    中村海人

    • ジョンソン
    • 井上瑞稀
    • 髙地優吾
    • 松倉海斗
    • 2時間SP
    • ジェシー
    • 猪狩蒼弥
    • Travis Japan
    • SixTONES
  10. 10

    ニュース

    ゴーグル焼け

    • アメリカでは
    • アメリカ
20位まで見る

人気ポスト

よく使う路線を登録すると遅延情報をお知らせ Yahoo!リアルタイム検索アプリ
Yahoo!リアルタイム検索アプリ